
DERIVATION OF FORMULAS FOR THE GRADIENT OF THE ERROR IN THE 

ITERATIVE SOLUTION OF INVERSE PROBLEMS OF HEAT CONDUCTION. 

I. DETERMINATION OF THE GRADIENT IN TERMS OF THE GREEN'S 

FUNCTION 

O. M. Alifanov UDC 536.24 

We consider the construction of the gradient of the error functional for the 
iterative solution of inverse problems involving equations of the parabolic type. 
The linear formulation of the problem is analyzed. 

In the solution of incorrectly posed inverse problems of mathematical physics, a widely 
used method is iterative regularization, where the stability of the approximate solution is 
attained by limiting the number of iterations in a way that is consistent with errors in the 
initial data [1-6]. Regularizing gradient algorithms [2, 3, 6-11] possess high computational 
efficiency and universality of practical application. In this method, the gradient of the 
error functional is calculated in each iteration 

Y (~0 = Au - -  [ ( 1 )  

where this functional is associated with the extremum formulation of the inverse problem 

Au=[, uCU, f6F. 

Here u and f are the unknown and known elements: U and F are certain normalized spaces; 
A:U § F is a given operator. The procedure of calculating the gradient J'u determines to a 
significant degree the accuracy and speed of the solution algorithm of the inverse problem. 

The present paper is one of three parts. We consider two general analytical approaches 
to the construction of the error gradient for inverse problems of generalized heat conduc- 
tion. The first is based on the integral representation of the solution in terms of a Green's 
function and is applicable in the case of a linear operator A (this approach is given in the 
present paper). The second approach applies not only to linear problems, but also to non- 
linear ones, and is based on the solution of a boundary-value problem conjugate to the problem 
for the field increment of the variable state (this approach will be considered in the second 
and third papers of this series). These methods of finding the gradient are distinguished 
by their high accuracy and fast execution time. 

Below we consider the usual case in practical situations where the space of square- 
integrable L 2 functions is chosen as U and F. We consider only the case of a single spatial 
variable. As shown in [12], it is a rather simple matter to transform from a known gradient 
of the functional in the space L 2 to the gradient of this functional in the space of W2 k func- 
tions, which, along with their derivatives up to the k-th order (the derivative is understood 
in the sense of generalized functions) are square-integrable. Then a priori information on 
the smoothness of the required function can be taken into account 

The determination of the error gradient in terms of the Green's function assumes that 
the solution of the corresponding direct problem is known, and written in terms of this func- 
tion. We discuss this matter in more detail. 

In the region Q = (0, b) x (0, ~m) we consider the following parabolic equation with 
variable coefficients 

L:r "~)----q(x, "~), (2)  
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where 
0 
Or 

0 z O 
Ox ~ + a~ (x, ~:) --if-fix + a~ (x, ~). 

We consider (2) subject to the initial condition 

T(x, O) = lira T(x, -c) = ~(x) (3) 

and the boundary conditions 

B ~ T  (0, "c) = pz ('~), B ~ T  (b, T) = p.,_ ('v), 

where the operators B~x and B2~ have the form: 

BI~ = [y~(~c) O--~--x + (h(J)]x=o' 

[ o ] 
B.~ = ~o (~) ~ + ~, ('0 �9 

x ~ b  

(4) 

(5) 

(6) 

We assume that 71 # 0, 72 # 0. The corresponding results for boundary conditions of the first 
kind can be obtained in a similar way and will be presented without detailed derivation. 

We consider the system of operators {Axz, Blz, B2~}, where T is treated as a parameter, 
and we construct the conjugate system {Axe* , BI~* , B2z* }. Assuming that the coefficients 
at(x, ~), a2(x , ~), a3(x , ~) are sufficiently smooth in x, we write the following differential 
expression, which is referred to as being formally conjugate to Ax~T: 

A;~  (x ~) = ( _  1)~ (a~_~,) 
~=o Ox ~ 

Let the functions T(x, ~), ~(x, ~) have continuous derivatives with respect to x up to 
the second order inclusive in [0, b]. The second Green's relation is 

b 

t' (fpA,:~T -- T, ~ )  dx [a~2T~ -1-' T (a.,~ (aa~)x)lX--~. ( 7 ) 
b 

The system of operators {Axe* , Bl@ '~, B2T* } is called conjugate to {Ax~ , BI~ , B2~ } if 
the right-hand side of (7) vanishes when 

B,~T (O, "c) = O, B,_rT (b, ~)= 0; (8) 

B:~T, (0, T) = 0, B~r (b, T) = 0. ( 9 )  

From (5) ,  (6) ,  and (8) we have 

T.~(O, - c ) -  cq T(O, "r), T~(b, " r ) -  o5 T (b, "r). 
Vl ~'2 

We substitute these quantities into the right-hand side of (7) and equate the result to zero: 

?~ x=o ~1 J x=O 
It then follows that 

[ BI ,~ (0 ,  ~ ) =  ( a l ~ ) ~ + ~  al as , (10) 
'~1 x~O 

[ l "  )] as �9 (Ii) 

We determine now the operator Lx~* , formally conjugate to Lx~: 

L*-- 0 , 
XT AXT 

a~ 
(12) 
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and we consider the integral 

~ra b 

.I e, j" (eL=r--TL;~,I')& 
0 0 

Tnz b 

( [a~t~T~ + T (a2~ z=~ --  (at~)~)L=o + 3' 
[ 

[t~T]~=0z=zm dx. 
0 

(13) 

The right-hand side of this expression is zero, if we assume the conditions (8) and (9) and 
also the conditions 

T (x, 0)= 0, ~ (x, ~ ) =  0. 

Hence t he  f o l l o w i n g  b o u n d a r y - v a l u e  problem i s  c o n j u g a t e  to  t he  problem d e f i n e d  by (2 ) -  
(4): 

L~r (x, T) = S (x, T), (x, "c) 6 Q; 

(x, ~ )  = ~ (x); 

B ~ ,  (0. -~) = g,. (~); B ~ ,  (b. ~) = g~ (~), 

5(x), gl(~), g2(~) are certain functions. where S(x, ~), 

(i4) 

(15) 

(16) 

We introduce in the usual way the Green's functions for the systems of operators {Lxx , 
BI~, B2~ } and {Lx~*, BI~*, B2T*}, denoting them by G(x, ~; x', ~') and G*(x, ~; x', ~'), re- 
spectively. These functions satisfy the conditions 

Lx~G(x, "~; x', "d)= O, x6(0, b), �9 > g ' ;  

BI~G(0, ~; x', x ' ) =  B,~G(b, "~; x', x')----- O, x' 6 (0, b), "~>'r,'; 
b 

lira J' G (x, T' + e; x', "d) f (x) dx : f (x'), f (x) 6 C [0, b], e > 0; 
e ~ 0  

0 

L*=O*(x, z; x', ~ ' )=  0, xC(0, b), ~ < ~ ' ;  

B~G*(O, "~; x', "d)----B~xG*(b, ~; x', x')----0, x'6(0, b), T < x ' ;  

(17) 

( 1 8 )  

( 1 9 )  

(20) 

(2i) 

b 

lim 5 G*(x, ~ ' - - e ;  x', x ' ) [ (x )dx=f (x ' ) ,  [(x)CC[O, b], e > 0 .  (22) 
~ 0  

0 

I t  i s  known [13, 14] t h a t  f o r  any two p o i n t s  (x,  x) and (x '  "c') of  Q fo r  which x > "c' 

'" x). (23) G(x, x; x', " d ) :  O*(x', x,  x, 

The r e l a t i o n  (23) can be o b t a i n e d  by p u t t i n g  

T(y, x )=  G (y, t; x(, x'), ~ (y, t )=  G* (y, l; x, ~), 

and integrating Green's identity with these values of T and ~ over the region 

x- -e  b--6 

YC[0+6 ,  b - -6 l ,  t 6 [ ~ ' + e ,  z - - e l ,  x,+~5 dto~+8 [G*(y, t; x, "r t; 

x', T ' ) - -O(y,  t; x', T')LytG*(tj, t; x, T ) l d y =  - -  j" {ax (y, t)O*(y, l; (24) 
T "-}-~ 

x, z)G u (Y, t; x', ~') + G(y, t; x', ~') [a2 (y, t)G* (y, t; x; ~)--  

b--6  

,_6 y = b - - 6  - - (a t (y ,  t)G* (y, t; x, )),l}lu=0+~dt + ~f [G(y, t i x', ~')G*(y, t; x, ~#=~-~ I l t= '~ '+e ,  
0 §  

where E, 6 > 0. 

In this expression the integral on the left-hand side is equal to zero in view of the 
conditions (17) and (20). From (18), (5), (6) and (21), (i0), (ii), the first integral on 
the right-hand side of (24) will go to zero in the limit 6 + 0. Therefore, we arrive at the 
relation 

b b 

(G(y, "c--e; x', x') G* (y, T---e; x. "~) dy = .[ G (y, "~' + e; x', "r') O* (y, "d + e; x, "~) dy, 
o o 
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from which we obtain the required relation (23) in the limit e + 0 if we use (19) and (22). 

We consider again the integration of Green's identity, taking for the integration vari- 
ables x' e [0, b], ~' e [0, �9 - e] and using the function G*(x', ~'; x, ~) as ~(x', ~'): 

a~' ~ [o* (~', ~'; ~, ~) L~,~,T (~', ~') - -  T ~',  ~') Lx,~,O~ (~, ~ ,  ~, ~ ) ] d ~ '  = 

0 0 

S { " z) T , ,  ( x ,  ~') - -  T t x ,  ~') (al  (x ' ,  ~ ')  G*(x', ,c , = - -  a~ (x', ,c') G* (x', ~ , x, 
0 

t .  x "=b  dT, ~ __ x, "O),, + a ~ t x ' ,  "~')T(x' ,  , ' ) O * ( x ' ,  ~ , x, ~))I. ,=o 

b b 

--J'T(x', 0) G*(x', 0; x, ~ ) d x ' +  , i 'T(x" "c--~)G*(x', "v--~; x, "Odx" 
0 0 

Using (20) and (23), we obtain in the limit ~ + 0 the following expression: 

T (x, 1:) = I~ (x, ~) + f2 (x, ~) -i- I~ (x, "~), 

where 

( 2 5 )  

"~ b 

Ix (x, x) = .[ d~' j" G (x, "~; x', "d) Lx,~,T (x', "V) dx' = 
0 0 

b 

l~(x, "0 = i" T(x ' ,  O)a(x, ~; x', 0 ) d x ' =  
0 

I, (x, ~) = .f {al (x', "d) T=, (x' ,  ~') G* (x' ,  
0 

T b 

t'dx'j" O(x, -c; x', "~')q(x', ~ ' )dx ' ,  
0 0 

b 

( O (x; ~; x',  O) ~ (x') dx' ,  
r 

~'; x, ~) - -  T (x', ~ ' ) •  

, ,. . '- TB ix "=.,,d. ~ , X (al(x', T ' )G*(x,  x ,  x, "O)~.-+-a.~(x','d)T(x', ~')G*(~:', ~ ,  x, , , ,~ '=o  �9 

I n  t h e  f o r m u l a  f o r  I 3 ( x ,  x )  we s u b s t i t u t e  t h e  v a l u e s  o f  t h e  d e r i v a t i v e s  T x ( 0 ,  x ' )  a n d  
T x ( b  , ~ ' )  f r o m  t h e  b o u n d a r y  c o n d i t i o n s  ( 4 ) :  

I3(x, ~ ) =  t" al(b, ~')G* (b, ~'; x, ~) p.,('c'___~) d r ' - -  "~- (~') 

i o,/o ,.; , !  , ,  + io ?~ (~') ~. 

'- -O)x,  - -  " ~) % (~') (at(O, T ' ) 6 *  (0, ~ ,  x, x G * ( 0 ,  x ,  x, - -  
71 (~') 

] [ '" T) ~~ '" "0 T (b, T') at  (b, "~') G* (b, "c , x, "-=----- ' - - a . , ( 0 ,  "c ' )G*(0,  ~ ,  x, -- -~- 
" 7 ~  (~') 

i l  " x, T)h.. a.,(b, "V)G* (b, ~'; x, "0 d~'. + (al (b, ~') O* (b, -c, - -  

Using the conditions (23) and (21), (i0), (ii), we obtain finally 

T T 

I~(x, 0 =  .tG(x, T; h_, T')al(O, ~'~ P~(~') e ~ ' -  .fG(x, "~; o , -aa; (o ,~ ,  ~') ~ ' (~ ' )  
o W- (~') o 71 (~') 

- -  dT'. 

Therefore, we have found expressions for the three terms 11, 12, and 13 which deter- 
mine the solution T(x, ~) (from the superposition result (25)) of the boundary-value problem 
(2)-(4) in terms of the Green's function. 

If instead of the boundary conditions used above we were given conditions of the first 
kind (YI = 72 = O, o I = 02 = i), then the solution (25) would change only in the term 13, 
which in this case would take the form 

1..~(x, T) -- pl  (~') (al (0, ~') G ~ (x, T; 0, ~'))x.dT' - -  t P~ (~') (a, (b, ~') 0 ~ (x, r; b, ~ ,)x,d~ , 

where G I is the Green's function for (2) with boundary conditions of the first kind. 
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If we now consider any of the functions q(x, t), ~(x), pl(x), p2(x) as unknown, we arrive 
at a formulation of the inverse problem with a linear, given operator A in the functional 
(i). In this case an explicit expression can be obtained for the error gradient J' = A*(Au - 
f), defining the conjugate operator A*. 

Let the required function be q(x, T). From the point of view of the uniqueness of the 
solution of this inverse problem, it is necessary to use the field T(x, T) as the initial 
data, and write the error in the form 

where 

~rn b 

J (q) --= l ! dTbf (Aq --  

x b 

Aq = ~ d'~' .t' q (x', T') O (x, "~; x', "~') dx', A : L2 (Q) ~ L2 (Q); 
0 0 

[ = T (x, ~) - -  12 (x, x) - -  13 (x, x). 

We introduce the notation A(x, ~) = Aq - f, and using the definition of the conjugate 
operator, we write the following identity for the scalar products: 

(Aq, A)L,(Q) = (q, A*A)L,(Q). (26)  

We write out the left-hand side of (26): 

rm b I: b 

(Aq, A)L,(Q)= .[ dx.[  A(X, "c)dx.[ dr' .[ q(x', x')G(x, "r,; x', "~')dx' 
0 0 0 0 

and change  t h e  o r d e r  o f  i n t e g r a t i o n  
x m b "~m b 

(Aq, A)L, tQ)= i" dT' .( q(x', "r')dx' .(d'~.[ A(x, T)G(x, x; x', "~')dx, (27)  
0 0 x '  0 

Comparing (27) with (26), we obtain the required expression for the gradient 

~m b 
�9 r 

~" 0 

We asstune now that q(x, ~) = q0(x, ~)s(~)~ where~p(x, r) is known, and assume that we are 
given the functions ~n(~) = T(d n, ~), n = i, N, N > i, 0 < d n < b. It is required to find 
the g r a d i e n t  J ' s ( ' r )  o f  t h e  f u n c t i o n a l  

N ~m 

S(s) = _I~ 2 ~___, ! (A.,~s - -  f.)z d~, 

where 

As,~s = .f dx' ( (~ (x', x') s ('~') O (d,', "~; x', "~') dx'; 
0 '0 

As,, : L2 [0, Tin] -+ L2 [0, xm]; f,~ = f," (~) - -  I2 (d,', "Q - -  la (d,', "Q. 

N 

It is not difficult to show that J~ = ~A]n(Asns--fn) , therefore it is necessary to find 

the conjugate operators A*sn. Writing the identity 

= (s, A~n~s.)L,to,~.~l, ( 2 g )  (As,,s, Asn)m, t0,~ml 
where Asn(~) = Asns - fn, and writing out the left-hand side of (28), we obtain the following 
result after changing the order of integration 

~F~ Tm 
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where 
b 

(D (dn, T, ~:')= .i (p(x', T')O(dn, "~; x', "r 
0 

Hence the required result for the conjugate operator is 

A2~A~,~ = S A~ (~) q) (d~, "~, "~') d'~. 

Following the same reasoning, it can be shown that if q(x, 
a known function) then the gradient of the functional 

N ~ra 

~) = ~(x, T)W(X) (T(X, ~) is 

where 
b 

A ~ w  = ~ d'V .f cp (x', z') w (x') G (d,~, "~; x', ~') dx', A=.~:L~[0, b] -+ L~ [0, ~ 1 ,  
0 0 

will be equal to 

N "grrt 

J~, = ~ A~,nA~,,,, A~,nA~,.. = J A~K (d~, x', ~)d% 
n = l  0 

A ~  = A ~ w - - [ ~ ,  K(d~, x', ~ ) =  5 (p(x'' ~')O(d~, T; x', "c')dT'. 
0 

S i m i l a r l y  we can  d e r i v e  e x p r e s s i o n s  f o r  t h e  g r a d i e n t  o f  t h e  e r r o r  f u n c t i o n a l s  w i t h  r e -  
s p e c t  t o  ~ ( x ) ,  p l ( ' r ) ,  p 2 ( ' c ) .  O m i t t i n g  t h e  s u b s c r i p t  n f o r  s i m p l i c i t y ,  we w r i t e  down t h e  c o r -  
r e s p o n d i n g  f o r m u l a s  f o r  t h e  o p e r a t o r s  A and A*" 

b 

A ~ = ~  ~(x')G(d, "~; x', O)dx', A~:L2[O, bl-~L2[O, %~]; 
0 

"~n'L 

A* = ~ ' ~E y(T) G(d, T; x ,  O) d'r; 
0 

"c 

Ap,pl ----- - -  ! al  (0, "~') P1.~1 ('V) ('~') G (d, T; O, -d) d~', Ap," Lo_ [0, ~,,d --~ L~ I0,. "~m]; 

A;,y --- al (0, T') [ Y U) G (d, "r; O, ~') d'c; 
?~ (~') ~, 

Ap,p2 = .[ a~(b, ,')p~(.r___j)G(d, ~; b, ~')d.d, Ap= "L210, %~1--+ Lo [0, zml; 
o ~ (~') 

�9 a ~b .~,, ~m 
Ap~y -- ! tv' 77, ) f y('r,)O(d, "~; b, "~')d'~. 

~., (?) ;, 

Similarly for b o u n d a r y  conditions of the first kind, we obtain 

T m 

A*p,y = j" y (T) (a, (0, "r CI(d, "t'; 0, T'))x,dz'; 

Apse = - -  V (T) (a 1 (b, "c')GI(d, % b, T'))x,dT. 

( 2 9 )  

It was assumed above that (2) was specified with fixed boundaries and it was also asslmmed 
that the functions fn(~) were known at certain points dn, fixed in position. In practice it 
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is sometimes necessary to take into account the movement of both the boundaries of the 
region and also the measured points. That is, we require the solution of the inverse prob- 
lem in the region QT = {Xl(~) -< x < X2(T), 0 < r < ~m}, knowing the functions fn(~) = 
T(dn(x), ~), n = i, N. 

One of the possible approaches to the solution of this problem is based on the method 
of fictitious boundaries [3]. The essence of the method, in the context of the case con- 
sidered here, is as follows. The region Q~ is expanded to the rectangular region Q = [a, 
b] x [0, Tm], where a--minXi(z),b=maxX2(x) are so-called fictitious boundaries. It is then 

"ce[ O,r m ] "re[ O,Zm] 
required to determine the coefficients of equation (2) in such a way that the required s_mooth- 
ness of these coefficients as functions of x, T will be assured over the entire region Q. 
From the solution of the auxiliary inverse boundary-value problem in the region Q with the 
data fn(T), n = i, N, the conditions on the boundaries a andb are found. We note that it 
is convenient to consider boundary conditions of the first kind, i.e., to look for the func- 
tions T(a, T), T(b, T), since a problem of this kind for (2) is better determined than the 
other formulations [3]. Then from the solution of the boundary-value problem of the first 
kind in the region Q, the required quantities are determined along the lines XI(~) and X2(~) , 
T e [0, ~m]" 

The transition to an expanded rectangular region with fictitious boundaries is useful 
in simplifying the solution algorithm of the original inverse problem, since for many cases 
(Eq. (2) with constant coefficients, for example) the Green's function can be obtained in 
explicit form (see [15], for example). In the formulas for the error gradient, dn(~) must 
be substituted for the fixed constants d n. 

It must be pointed out that the expansion of the region of the solution decreases the 
determinability of the inverse problem to be solved in this region. Therefore it is best 
to choose an expanded region as close as possible to the original region and yet such that 
the Green's function is known for it. 

We consider one of the practically important cases: the inverse problem for the heat 
equation with constant coefficients in a region with one moving and one fixed boundary: 

T~=ctT~ ,  (x, x ) C Q ~ =  { O < x < X ( ' r ) ,  O < ' r ~ < ' r ~ } .  

We take the boundary conditions in the form 

T(x, O ) = ~ ( x ) ,  x~[O, X(O)]; 

T (0, T) ----- f (T), yT~ (X (z), T) -k ~T (X (T), ~) = p (~), �9 C [0, gm]. 

We t a k e  a s  an e x p a n d e d  r e g i o n  t h e  f o l l o w i n g  t r a p e z o i d a l  r e g i o n  Q = {0 < x < y ( ~ )  = s + 
vx, 0 < x < Xm} closest to Q~. We thus require that the function y(~) satisfy the conditions 

y (x) ~ X (x), y (x) : rain max lY i'c) - -  X ('r)l, 
l,,5' "t 

where s >_- 0 and v are parameters determining the uniformly moving fictitious boundary. 

We consider the boundary-value problem of the first kind for the heat equation in the 
region Q, with the condition T(y(~), T) = ~(~) on the fictitious boundary. Following [16], 
we write the solution 

y(O) x x 

' a ~ , ( ~ ,  . _ T(x, "~)= .I ~(x')G'(x, "r; x ,  O)dx'-t-a .[ [('d) x; O, ~')dx' a .[ • "q y(x'), "d)d'~'. ( 3 0 )  
0 0 0 

In this expression the Green's function has the form 

1=+~' ] 
1 E exp [ -vzx---f-'']z x'v ] • 

GI(x, x; x', x') = 2 f a n  (x - x'--) a a 

l [  ] [ ,2v,,+x (2v'~'j + x' - -  x) z - -  exp - -  
x exp 4a ('~ - -  "r') 4a (1; - -  "r') 
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Hence in the calculation of the gradient of the functional J'~(~) in the iterative solu- 
tion of the inverse problem one can use (30) for the function~(~) and (29) for the conjugate 
operator, in which we put in place of at(b, ~') and b, the constant a and the function y(~'), 
respectively. If the temperature is measured at the moving points dn(~), then the number d 
is replaced by the corresponding function. 

After calculating • the boundary-value problem of the first kind is solved in the 
region Q, and the required quantity p(~) is found on the line X(~). The integral represen- 
tation (30) is also used for this procedure. 

We note that Green's functions have been obtained for the heat equation with constant 
coefficients for other regions with uniformly moving boundaries [16]. 

Therefore, the method discussed in this section is convenient to use in the calculation 
of the error gradient whenever the Green's function can be found analytically. In the case 
when the Green's function is unknown and can be constructed only numerically, it is more ef- 
ficient to find the gradient by a different, more general method which uses the solution of 
the conjugate boundary-value problem. This problem will be considered in the next paper of 
the current series. 
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